Embracing Complexity: Yeast Evolution Experiments Featuring Standing Genetic Variation

Author:

Burke Molly K.ORCID

Abstract

AbstractThe yeast Saccharomyces cerevisiae has a long and esteemed history as a model system for laboratory selection experiments. The majority of yeast evolution experiments begin with an isogenic ancestor, impose selection as cells divide asexually, and track mutations that arise and accumulate over time. Within the last decade, the popularity of S. cerevisiae as a model system for exploring the evolution of standing genetic variation has grown considerably. As a facultatively sexual microbe, it is possible to initiate experiments with populations that harbor diversity and also to maintain that diversity by promoting sexual recombination as the experiment progresses. These experimental choices expand the scope of evolutionary hypotheses that can be tested with yeast. And, in this review, I argue that yeast is one of the best model systems for testing such hypotheses relevant to eukaryotic species. Here, I compile a list of yeast evolution experiments that involve standing genetic variation, initially and/or by implementing protocols that induce sexual recombination in evolving populations. I also provide an overview of experimental methods required to set up such an experiment and discuss the unique challenges that arise in this type of research. Throughout the article, I emphasize the best practices emerging from this small but growing niche of the literature.

Funder

National Institutes of Health

Publisher

Springer Science and Business Media LLC

Subject

Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3