Implementation assessment of calcined and uncalcined cashew nut-shell ash with total recycled concrete aggregate in self-compacting concrete employing Bailey grading technique

Author:

Tantri AdithyaORCID,Nayak GopinathaORCID,Shenoy AdithyaORCID,Shetty Kiran K.ORCID,Achar JagadishaORCID,Kamath MuralidharORCID

Abstract

AbstractThe present study concentrates on the performance evaluation of calcined and uncalcined cashew nut-shell ash (UCCNA and CCNA) with treated total recycled concrete aggregate (TRCA) in self-compacting concrete. The achievement of sustainable self-compacting concrete (SCC) is possible by the implication of four stages, which includes TRCA treatment process, gradation selection process through Bailey aggregate grading technique, by considering TRCA replacement percentage with an increment of 25% and up to 100% and by considering UCCNA or CCNA replacement with an increment of 5% and up to 20%. Hardened and fresh properties of SCC have been performed and analyzed based on the compliance requirements of SCC. In addition finding results through microstructure assessment was in line with the findings of the hardened and fresh properties of SCC. In addition, quality and dynamic instability assessments of SCC were analyzed through ultrasonic pulse velocity and drying shrinkage aspects. Besides CO2, the emission rate and the efficiency rate of SCC, composites were analyzed in detail. Overall findings revealed that CCNA-based SCC mixes performed effectively than UCCNA-based SCC; specifically, incorporation of 75% of TRCA with 15% CCNA was found to be optimal. But with regard to shrinkage performance UCCNA found to be better by imputing less shrinkage compared to CCNA-based SCC mixes. Further with regard to efficiency rate of SCC composites revealed the gain of maximum efficiency of about 0.156 MPa/kg CO2/m3 and 0.160 MPa/kg CO2/m3 for 15% and 20% CCNA-based SCC mixes.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Geotechnical Engineering and Engineering Geology,Building and Construction,Civil and Structural Engineering,Environmental Engineering,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3