Affiliation:
1. Department of Civil Engineering and Environmental Engineering, School of Engineering and Digital Sciences, NazarbayevUniversity, 010000 Astana, Kazakhstan
2. Department of Civil Engineering, COMSATS University Islamabad, 22060 Abbottabad, Pakistan
3. MasseyUniversity, Albany, New Zealand
4. Department of Civil Engineering, GIK Institute of Engineering Sciences and Technology, Topi, Pakistan
Abstract
In developing countries, one of the usual practices is the uncontrolled, open burning of corn stalk (CS) or its utilization as a fuel. It is known that the ash obtained under uncontrolled burning conditions constitutes blackish and unburnt carbon particles as well as whitish and grayish particles (representing crystallization of silica) due to over burning. However, controlling the burning process can improve the quality of ash produced to effectively use it in cement-based materials. Hence, this research was aimed at exploring the pozzolanic properties of corn stalk ash upon calcination and grinding, for it to be used in the manufacturing of sustainable cement-based materials. In order to obtain a suitable corn stalk ash (CSA), which can be used in cement/concrete, a research investigation consisted of two phases. In the first phase, calcination was carried out at 400°C, 500°C, 600°C, 700°C, and 800°C for 2 hours. The tests applied on the resulting ashes were weight loss, XRD, pozzolanic activity index (PAI), Chapelle, Fratini, and consistency. From XRD spectra, it was found that, at lower temperatures, silica remained amorphous, while it crystallized at higher temperature. Ash combusted at a temperature of 500°C possessed largest pozzolanic activity of 96.8%, had a Fratini CaO reduction of 93.2%, and Chapelle activity of 856.3 mg/g. Thus, 500°C was chosen as an optimum calcination temperature. In the second phase, the ash produced at 500°C was grinded for durations of 30, 60, 120, and 240 minutes to ascertain the optimum grinding times. Resulting ashes were examined for hydrometer analysis, Blaine fineness, Chapelle activity, and pozzolanic activity. Experiment outcomes revealed a direct relationship between values of Blaine fineness, surface area, Chapelle activity, PAI, and grinding duration. It was concluded that CSA can be used as a pozzolan, and thus, its utilization in cement/concrete would solve ash disposal problems and aid in production of eco-friendly cement/concrete.
Funder
COMSATS University Islamabad
Subject
General Engineering,General Materials Science