Experimental study of mechanical properties of artificial dam for coal mine underground reservoir under cyclic loading and unloading

Author:

Lyu Xin,Yang Ke,Xu Chaoshui,Fang Juejing,Duan Minke,Zhang Zhainan

Abstract

AbstractThis study investigates the stability of an artificial dam used in an underground reservoir in a coal mine under periodic weighting imposed by overlying rock strata. For this purpose, cyclic loading and unloading tests with different stress amplitudes were designed. Differences in the mechanical performance of the artificial dam with and without overlying strata were analyzed using a uniaxial compression test. The mechanical properties of the structure under constant-amplitude cyclic loading and unloading were characterized. Further, the law of influence of stress amplitude on stability was discussed. A formula for predicting the mechanical performance of the artificial dam with its overlying rocks (hereafter referred to as the complex) was finally derived and was suitable for clarifying the law of damage in the complex under cyclic loading and unloading. The results showed that the complex had changed the internal structure of rocks. The strength and deformation of the complex were intermediate to that of either single structure. All three underwent brittle failure. During the constant-amplitude loading and unloading tests, the hysteresis loop could be divided into three phases, namely, sparse, dense, and sparse again, with a shift in the turning point in rock deformation memory effect. As the stress amplitude increased during the test, the damping ratio of the specimens decreased, and the area of the hysteresis loop increased non-linearly. The dynamic elastic modulus decreased first and then increased. The confidence interval for the formula fitted based on the test results was above 97%. Damage to the complex caused by constant-amplitude loading and unloading could be divided into three stages. An increase in peak stress served as a catalyst for the evolution of small cracks within the specimens into median and large cracks, thereby accelerating the damage process.

Funder

China Scholarship Council Fund

Regional Innovation and Development Joint Fund of National Natural Science Foundation of China

Hefei Comprehensive National Science Center

Open Project Program of Anhui Engineering Research Center of Exploitation and Utilization of Closed/abandoned Mine Resources

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3