Improving breaking efficiency of hard rock: Research on the mechanism of impact-shear rock breaking technology

Author:

Ju Pei1ORCID,Tian Dongzhuang12

Affiliation:

1. CCTEG Xi’an Research Institute, Xi’an, China

2. China Coal Research Institute, Beijing, China

Abstract

To expedite drilling operations in hard rock of coal mines, a new type of impact-shear drill bit was developed, and its mechanism of speed-up and efficiency increase was studied. The RHT constitutive model was used to describe the structural behavior of rock, and the rock-breaking simulation model of full-size bit was established. Compared with PDC bit and hammer bit, the rock-breaking force, bit torque, and rock stress characteristics of impact-shear bit were analyzed. The results show that, in comparison to PDC bit and hammer bit, the axial force of impact-shear bit was reduced by 68.25% and 71.40%, respectively, and the average torque was reduced by 91.79% and 83.36%, respectively. Notably, for the impact-shear bit, the fluctuation of drilling force was effectively mitigated, the stick–slip vibration of bit was weakened, the rock-breaking energy consumption was drastically reduced, and the rock-breaking efficiency and bit’s life were finally improved. In terms of rock stress characteristics, the pre-impact effect of the central hammer bit of the impact-shear bit can release the internal stress of the rock well, and the stress of the rock element on the hole wall was relatively reduced, thus making it easier for the external PDC bit to break the rock. Field test results show that, under the condition of the small drilling rig, the impact-shear bit can give full play to the pre-crushing function of the impact mechanism, thereby effectively protecting the PDC cutter of external PDC bit, and realizing the fast hole-forming in hard rock of coal mine.

Funder

Key R&D projects in Shaanxi Province

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3