Modelling of fatigue damage in granitic rock by piezoelectric effect in quartz phase due to alternating current excitation

Author:

Saksala Timo,Ruiz Arturo Rubio,Kouhia Reijo,Kane Alexandre,Hokka Mikko

Abstract

AbstractThis paper considers numerical modelling of hypothetical fatigue damage in granitic rock by alternating current (AC) excitation of piezoelectric properties of Quartz. For this end, a numerical method consisting of a rock mineral mesostructure model, an implicit time stepping scheme to solve the piezoelectro-mechanical problem, and a fatigue damage model was developed. The rock material was assumed to be heterogenous linear elastic and isotropic, save the Quartz piezoelectric properties, which are anisotropic. An evolution equation-based continuum scalar damage model based on an evolving back stress tensor and a moving Drucker–Prager type of endurance surface was applied to compute the damage inflicted by the AC excitation. The damage was computed in a post-processed mode, i.e., un-coupled to the material model, at this stage of investigations. Some preliminary axisymmetric simulations are presented with a rock mesotructure based on electron backscatter diffraction data. These simulations corroborate the hypothesis that fatigue damage can be induced on granitic rock by converse piezoelectric effect in the Quartz phase by sinusoidal alternating current. More specifically, fatigue damage was induced on a disc-shaped numerical rock sample at a voltage of 15 kV with 2.5 kHz of frequency.

Funder

Luonnontieteiden ja Tekniikan Tutkimuksen Toimikunta

Tampere University including Tampere University Hospital, Tampere University of Applied Sciences

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Geological Disaster Rainfall Measurement System Based on Piezoelectric Sensing Technology;2023 International Conference on Network, Multimedia and Information Technology (NMITCON);2023-09-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3