Pore structure characterization of sandstone under different water invasion cycles using micro-CT

Author:

Mao Weizheng,Yao Yujing,Qin ZheORCID,Liu Yongde,Han Jihuan,Liu Zhen

Abstract

AbstractThe meso-structural changes of rocks during repeated cycles of water invasion are the fundamental cause of macroscopic physical property damage. In this paper, based on the computed tomography scan images of rock samples under different numbers of water invasion cycles, a three-dimensional pore network model was constructed to analyze the changes in pore structure under the action of water invasion. The damage variable was introduced to quantitatively characterize the parameter damage of each pore and reveal the evolution of rock meso-damage. The results show that 81% of the pore radius is less than 10 μm under 0 water invasion cycles and that 76% of the pore radiuses are less than 10 μm after 10 water invasion cycles. After 10 water invasion cycles, the peak range of the pore radius distribution enlarged from the initial range of 2–4 μm to that of 4–6 μm and the proportion of pore throats with a radius less than 10 μm decreased from an initial 82–72%. With an increase of water invasion cycles, the proportion of large pores increased and the connectivity among pores enhances gradually. The damage variable of each pore parameter changed the most during 2–5 water invasion cycles. After 10 water invasion cycles, the maximum degree of damage that the pore volume reached was up to 41.44% and the minimum degree of damage of the pore coordination number was 5.80%. The test results helped to reveal the pore structure changes and the damage of rock samples during water invasion cycles.

Funder

National Natural Science Foundation of China

Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3