Machine learning approach for the prediction of mining-induced stress in underground mines to mitigate ground control disasters and accidents

Author:

Vinay Lingampally SaiORCID,Bhattacharjee Ram Madhab,Ghosh Nilabjendu,Kumar Shankar

Abstract

AbstractThe bord and pillar method is commonly employed in Indian underground coal mines, and the extraction rate varies between 30 and 65%. During pillar extraction, pillars are subjected to severe stress conditions. Due to this, the natural state of stress equilibrium is disturbed, resulting in severe strata control problems leading to sudden, unpredictable failure such as a premature collapse of pillars, severe roof or side fall, and sometimes leading to serious/fatal injury or burial of machinery. This paper deals with the prediction of mining-induced stress during pillar extraction using Machine Learning (ML) techniques like Random Forest and Multilayer Perceptron. The various factors used for the formulation of the models for predicting the mining-induced stresses are Depth of the workings (H), Panel width/length (W/L), Pillar width/working height (w/h), Goaf length, and Area of extraction. This paper highlights the importance of operational parameters rather than geological parameters. The Correlation coefficient ($${R}^{2}$$ R 2 ) of mining-induced stresses for the case studies discussed in the paper is 0.85 for Random Forest and 0.76 for Multilayer Perceptron, which shows Random Forest results have a comparative edge over Multilayer perceptron. With this developed prediction models, the stress conditions of pillars can be predicted. Graphic abstract

Publisher

Springer Science and Business Media LLC

Subject

Economic Geology,General Energy,Geophysics,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3