Classifying Coal Mine Pillar Stability Areas with Multiclass SVM on Ensemble Learning Models

Author:

Hertono Gatot Fatwanto,Wattimena Ridho Kresna,Mendrofa Gabriella Aileen,Handari Bevina Desjwiandra

Abstract

Pillars are key structural components in coal mining. The safety requirements of underground coal mines are non-negotiable. Accurately classifying the areas of pillar stability helps ensure safety in coal mines. This study aimed to classify new pillar stability categories and their stability areas. The multiclass support vector machine (SVM) method was implemented with two types of kernel functions (polynomial and radial basis function (RBF) kernels) on pillar stability data with four new categories: failed or intact, either with or without an appropriate safety factor. This classification uses three basic ensemble learning models: Artificial Neural Network-Backpropagation Rectified Linear Unit, Artificial Neural Network-Backpropagation Exponential Linear Unit, and Artificial Neural Network-Backpropagation Gaussian Error Linear Unit. The results with four data proportions and ten experiments had an average accuracy and standard deviation of 92.98% and 0.56%-1.64% respectively. The accuracies of the multiclass SVM method using the polynomial kernel and the RBF kernel with Bayesian parameter optimization to classify the areas of pillar stability were 91% and 92%, respectively. The multiclass SVM method with the RBF kernel captured 96.6% of potentially dangerous pillars. The visualization of classification areas showed that areas with intact pillars may also have failed pillars.

Publisher

The Institute for Research and Community Services (LPPM) ITB

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3