Empirical evaluation of fully Bayesian information criteria for mixture IRT models using NUTS

Author:

AlHakmani RehabORCID,Sheng Yanyan

Abstract

AbstractThis study is to evaluate the performance of fully Bayesian information criteria, namely, LOO, WAIC and WBIC in terms of the accuracy in determining the number of latent classes of a mixture IRT model while comparing it to the conventional model via non-random walk MCMC algorithms and to further compare their performance with conventional information criteria including AIC, BIC, CAIC, SABIC, and DIC. Monte Carlo simulations were carried out to evaluate these criteria under different situations. The results indicate that AIC, BIC, and their related CAIC and SABIC tend to select the simpler model and are not recommended when the actual data involve multiple latent classes. For the three fully Bayesian measures, WBIC can be used for detecting the number of latent classes for tests with at least 30 items, while WAIC and LOO are suggested to be used together with their effective number of parameters in choosing the correct number of latent classes.

Publisher

Springer Science and Business Media LLC

Subject

Applied Mathematics,Clinical Psychology,Experimental and Cognitive Psychology,Analysis

Reference57 articles.

1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat Contr 19:716–723

2. Al Hakmani R, Sheng Y (2019) NUTS for mixture IRT models. In: Wiberg M, Culpepper S, Janssen R, González J, Molenaar D (eds) Quantitative psychology. Springer, New York, pp 25–37

3. Andrich D (1978) A rating formulation for ordered response categories. Psychometrika 43(4):561–573

4. Bilir MK (2009) Mixture item response theory-MIMIC model: simultaneous estimation of differential item functioning for manifest groups and latent classes. Doctoral dissertation. ProQuest Dissertations & Theses A&I. (Order No. 3399179)

5. Birnbaum A (1968) Some latent trait models and their use in inferring an examinee’s ability. In: Lord FM, Novick MR (eds) Statistical theories of mental test scores. Addison-Wesley, Reading, pp 397–479

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3