Target residence of Cas9: challenges and opportunities in genome editing
-
Published:2022-03-23
Issue:2
Volume:3
Page:57-69
-
ISSN:2524-7662
-
Container-title:Genome Instability & Disease
-
language:en
-
Short-container-title:GENOME INSTAB. DIS.
Author:
Feng Yi-LiORCID, Wang Meng, Xie An-Yong
Abstract
AbstractCRISPR/Cas9 genome editing is a latest success in biotechnology that repurposes a natural biological system for a practical tool in genetic engineering. Site-specific DNA double strand breaks (DSB) induced by the CRISPR nuclease Cas9 allows endogenous cellular repair apparatus to generate desired repair products. Residence of Cas9 on cleaved DNA conceals the DNA ends from recognition by response and repair apparatus, delaying DNA damage response (DDR) and repair. Thus, tight-binding and long residence of Cas9 on DNA target are proposed as a new determinant of DSB repair pathway choice and may collaborate with other endogenous pathway choice regulators to control DSB repair. Accordingly, harnessing the binding and resident behavior of Cas9 not only broadens the application of CRISPR/dCas9 platform, which at least in part depends upon the tight binding and long residence of dCas9, but also minimizes the undesired outcomes of CRISPR/Cas9 genome editing.
Publisher
Springer Science and Business Media LLC
Reference89 articles.
1. Amabile, A., Migliara, A., Capasso, P., Biffi, M., Cittaro, D., Naldini, L., & Lombardo, A. (2016). Inheritable silencing of endogenous genes by hit-and-run targeted epigenetic editing. Cell, 167(219–232), e214. https://doi.org/10.1016/j.cell.2016.09.006 2. Anders, C., Niewoehner, O., Duerst, A., & Jinek, M. (2014). Structural basis of PAM-dependent target DNA recognition by the Cas9 endonuclease. Nature, 513, 569–573. https://doi.org/10.1038/nature13579 3. Anzalone, A. V., Randolph, P. B., Davis, J. R., Sousa, A. A., Koblan, L. W., Levy, J. M., Chen, P. J., Wilson, C., Newby, G. A., Raguram, A., et al. (2019). Search-and-replace genome editing without double-strand breaks or donor DNA. Nature, 576, 149. https://doi.org/10.1038/s41586-019-1711-4 4. Arnould, C., Rocher, V., Finoux, A. L., Clouaire, T., Li, K., Zhou, F. L., Caron, P., Mangeot, P. E., Ricci, E. P., Mourad, R., et al. (2021). Loop extrusion as a mechanism for formation of DNA damage repair foci. Nature. https://doi.org/10.1038/s41586-021-03193-z 5. Artegiani, B., Hendriks, D., Beumer, J., Kok, R., Zheng, X., Joore, I., de Sousa, C., Lopes, S., van Zon, J., Tans, S., & Clevers, H. (2020). Fast and efficient generation of knock-in human organoids using homology-independent CRISPR-Cas9 precision genome editing. Nature Cell Biology, 22, 321–331. https://doi.org/10.1038/s41556-020-0472-5
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|