Instant plastic waste detection on shores using laser-induced fluorescence and associated hyperspectral imaging

Author:

Mahmoud AlaaeldinORCID,El-Sharkawy Yasser H.

Abstract

AbstractPlastic pollution is a rising environmental issue, with millions of tons of plastic debris collecting in the world's seas and on its shores. Hyperspectral imaging (HSI) has become increasingly widely used as a more precise approach that can identify targets in remote sensing aquatic missions. The interference from other beach materials, and the need for proper identification of litter types can make identifying dumped plastics on sand-surrounded beaches challenging. This study lays the groundwork for a physical laboratory setting for images captured by a hyperspectral (HS) imager. The suggested testing setup included the development of a fluorescence signature for the target theater of operations (low-density polyethylene (LD-PE) and wood surrounded by sand) for detecting polymers in a simulated beach environment using the laser-induced fluorescence (LIF) approach. Initially using broadband-spectrum light, strong sample diffuse reflectance contrast is observed in the imaging at wavelengths between 400 and 460 nm. Next, a dedicated LIF system for plastic litter discovery was developed using an ultraviolet (UV) laser source. Initial findings show that there is a distinct fluorescence signal for plastics at 450 nm and at 750 nm for wood. Our pilot studies support current efforts to determine the optimum spectral signature that these polymers will appear with clarity on shorelines using an inexpensive imagery combined with our UV LIF approach, which may have an impact on applications for the detection of beach pollution. The knowledge gained from this study can be used to construct reliable aerial conventional cameras for plastic waste environmental monitoring and management.

Funder

Military Technical College

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3