Salicylic Acid as a Tolerance Inducer of Drought Stress on Sunflower Grown in Sandy Soil

Author:

El–Bially Mohamed E.,Saudy Hani S.ORCID,Hashem Fadl A.,El–Gabry Yasser A.,Shahin Mostafa G.

Abstract

AbstractAgricultural water rationalization expressed in irrigating the plants below their requirements became a significant strategy in crop water management. However, reduction in crop productivity under low water supply is realized. Therefore, the current study aimed to diminish sunflower yield losses associated with deficit irrigation using salicylic acid (SA). During two seasons of 2019 and 2020 at El Nubaria region, El Behaira Governorate, Egypt, combinations of three irrigation regimes (100, 85 and 70% of crop evapotranspiration, denoted WR100%, WR85%, and WR70%, respectively), and three levels of SA (0.0, 0.5, and 1 mM. abbreviated as SA0.0, SA0.5, and SA1.0, respectively) on sunflower plants performance were evaluated. Treatments were arranged in a strip–plot design with three replicates. Findings revealed that treated sunflower plants with WR100% × SA1.0 contained the highest amounts of total chlorophyll and carotenoids as well as the lowest proline content. Seed yield of WR100% × SA1.0 treatment was higher than that of WR70% × SA0.0 by 109.7% in the first season and 125.9% in the second one. As averages of the two seasons, SA0.5 and SA1.0 lowered the reductions in seed yield from 21.0% to 15.8 and 14.4% as well as 46.2% to 40.8 and 40.1% under WR85% and WR70%, respectively, compared to the farmer common practice (WR100% × SA0.0). WR100% × SA1.0 for iodine value as well as WR100% × SA1.0 and WR100% × SA0.5 for seed oil % were recorded the highest. Application of WR100% × SA1.0 and WR100% × SA0.5 were the effective combinations for ameliorating water use efficiency. In conclusion, involving salicylic acid in irrigation programs of sunflower became a decisive action to save water and alleviate the yield losses resulting from drought stress.

Funder

Ain Shams University

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3