Evaluation of current and future water demand scenario and hydraulic performance of water distribution systems, a case study for Addis Kidam Town, Ethiopia

Author:

Mekonnen Yitbarek Andualem

Abstract

AbstractThe hydraulic performance and future water demand of water distribution networks are major factors affecting the efficiency of water distribution systems throughout the world. Currently, Addis Kidam Town in Ethiopia is facing many water supply challenges. Their existing water distribution system is inadequate experiencing significant water loss, pressure, and flow velocity. All becoming worse with forecast population increases. The main objective of this study was to evaluate the hydraulic performance of the water distribution network considering both the existing water demand, together with forecast future water demand. The study was undertaken in Addis Kidam Town in Ethiopia using static analysis and WaterGEMS V8i software. The data were collected using experiment tests, field observation, focus group discussions, and interviews. Sampling sizes of pipes and junctions of distribution networks were used to evaluate velocity and pressure changes of 12% and 15%, respectively, from high and low-pressure zones. The results of this study indicated that the existing distribution network was designed to supply a population of 8,906; however, the current population was 25,854. The existing system can accordingly not meet current demand. The current system was only supplying 19.5 l/c/d to each family and was only able to supply 45.2% of households. All compounded because water loss of the distribution network was 37.9%. Simulation of existing distribution network at junctions and pipes has both 26.6% and 4.3%, and 2.4% and 29.9% lower pressures and velocities during peak and minimum hourly demand, respectively. Model performance values of RMSE, MAE, R2, and NSE of distribution networks were 0.65, 0.40, 0.96, and 0.82 and 0.56, 0.38, 0.98, and 0.78 during the calibration and validation of pressure, flow, and tank level, respectively. The research recommends a two-phase strategic water distribution system response beginning by upgrading and expanding the water distribution network, to first achieve a supply of 30 l/c/d by 2032, and then lifting this to the 30–80 l/c/d range before 2042. The proposed water management upgrading approach is expected to establish a good water supply for all residential communities of the town facing comparable challenges. In general, this study’s findings showed that the existing water supply system could not meet the present demand, let alone meet future growth demand. The existing modeling highlighted that significant increases in supply are possible by targeting system improvements, together with the need to find additional supply to meet both present and future water demand.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Reference45 articles.

1. Abebe H (2020) Hydraulic performance of water supply distribution system in case of aiytyef subsystem, Dessie, Ethiopia (Doctoral dissertation)

2. Abduro S, Sreenivasu G (2020) Assessments of urban water supply situation of Adama Town. Ethiop J Civ Eng Res 10(1):20–28

3. Adedoja OS, Hamam Y, Khalaf B, Sadiku R (2018) Towards development of an optimization model to identify contamination source in a water distribution network. Water 10(5):579

4. Agunwamba JC, Ekwule OR, Nnaji CC (2018) Performance evaluation of a municipal water distribution system using watercad and epanet. J Water Sanit Hyg Dev 8(3):459–467

5. Ahmed AA (2022) Performance evaluation of urban water supply system; a case of Jigjiga Town, Somali Regional State, Ethiopia (Doctoral dissertation)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3