Developing a hybrid model for accurate short-term water demand prediction under extreme weather conditions: a case study in Melbourne, Australia

Author:

Zubaidi Salah L.,Kumar Pavitra,Al-Bugharbee Hussein,Ahmed Ali Najah,Ridha Hussein Mohammed,Mo Kim Hung,El-Shafie AhmedORCID

Abstract

AbstractAccurate prediction of short-term water demand, especially, in the case of extreme weather conditions such as flood, droughts and storms, is crucial information for the policy makers to manage the availability of freshwater. This study develops a hybrid model for the prediction of monthly water demand using the database of monthly urban water consumption in Melbourne, Australia. The dataset consisted of minimum, maximum, and mean temperature (°C), evaporation (mm), rainfall (mm), solar radiation (MJ/m2), maximum relative humidity (%), vapor pressure (hpa), and potential evapotranspiration (mm). The dataset was normalized using natural logarithm and denoized then by employing the discrete wavelet transform. Principle component analysis was used to determine which predictors were most reliable. Hybrid model development included the optimization of ANN coefficients (its weights and biases) using adaptive guided differential evolution algorithm. Post-optimization ANN model was trained using eleven different leaning algorithms. Models were trained several times with different configuration (nodes in hidden layers) to achieve better accuracy. The final optimum learning algorithm was selected based on the performance values (regression; mean absolute, relative and maximum error) and Taylor diagram.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3