Magnetic supported activated carbon obtained from walnut shells for bisphenol-a uptake from aqueous solution

Author:

Uzosike A. O.,Ofudje E. A.,Akiode O. K.,Ikenna C. V.,Adeogun A. I.,Akinyele J. O.,Idowu M. A.ORCID

Abstract

AbstractThis work investigated the usability of activated carbon walnut shell (ACWS) and magnetic activated carbon walnut shell (MACWS) for Bisphenol-A (BPA) elimination from aqueous solution. Fourier-transform infrared (FT-IR) and X-ray diffraction (XRD) were used to study the chemistry of the adsorbents. Batch sorption studies at different temperatures, contact time, adsorbent dosage, pH and varied Bisphenol-A concentrations were performed, while pseudo-first-order and pseudo-second-order kinetics models were deployed to investigate the kinetic data. Equilibrium parameters were computed using the Dubinin–Radushkevich, Freundlich, Temkin and Langmuir isotherms, while Box–Behnken design was used to optimize the adsorption factors. FT-IR report showed the existence of O–H, C=O, C–O and C=C stretches in both adsorbents and Fe–O in MACWS, while XRD revealed an amorphous morphology. BPA removal by ACWS and MACWS with correlation coefficient (R2) > 0.9 showed that the pseudo-first-order kinetic model was the most appropriate for explaining the kinetic data. Judging from the values of the maximum adsorption capacity (115.85 and 166.67 mg/g for ACWS and MACWS, respectively), it can be inferred that the Langmuir isotherm best describes the equilibrium results. Thermodynamic investigation showed the process of Bisphenol-A uptake to be spontaneous and endothermic with entropy change (∆So) values of 0.033 and 0.039 kJ/mol for ACWS and MACWS, respectively. The data obtained from the kinetics, isotherm and equilibrium studies revealed that ACWS and MACWS adsorbents were effective for the treatment of Bisphenol-A.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3