Elevation-distributed multistage reverse osmosis desalination with seawater pumped storage

Author:

Elsayed-Ali Hani E.ORCID

Abstract

AbstractA seawater reverse osmosis (RO) plant layout based on multistage RO with stages located at different elevations above sea level is described. The plant uses the weight of a seawater column from pumped storage as head pressure for RO (gravity-driven multistage RO) or to supplement high-pressure pumps used in RO (gravity-assisted multistage RO). The use of gravitational force reduces the specific energy for RO compared to using high-pressure pumps. By locating the RO stages at different elevations based on demand sites, the total specific energy consumption for RO and permeate transport to different elevations above sea level is reduced from that for locating the RO process entirely at sea level followed by lifting the desalinated water. A final RO stage at sea level uses seawater pressurized by energy recovery from the residual energy of the brine generated from the preceding RO stage. Examples of the plant layout that do not include pump inefficiency and head losses in pipes are described for South Sinai, Egypt, which is a mountainous region that suffers from water scarcity. A gravity-driven multistage RO with a storage tank at 660 m above sea level is considered. For five RO stages located 316–57 m above sea level with 10% recovery at each stage, the specific energy is ~ 32% lower than that for a plant located at sea level operating at the minimum specific energy followed by lifting the same quantity of desalinated water to the elevations of the distributed RO stages. For two stages located at 222 and 57 m above sea level with 30 and 20% recovery, respectively, the reduction in specific energy is ~ 27%. For gravity-assisted five-stage RO with the first stage at 260 m above sea level, while the last stage is at sea level with 10% recovery at each stage the reduction in specific energy is ~ 32%. The proposed RO plant layouts can be adapted to other regions with comparable topography.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3