Assessment of land-use and land-cover changes in Pangari watershed area (MS), India, based on the remote sensing and GIS techniques

Author:

Pande Chaitanya B.ORCID,Moharir Kanak N.,Khadri S. F. R.

Abstract

AbstractIn this paper, we focus on the assessment of land-use and land-cover change detection mapping to the effective planning and management policies of environment, land-use policy and hydrological system in the study area. In this study the soil and water conservation project has been applied during the five years and after five years what changes have been found in the land-use and land-cover classes and vegetation. In this view, this land-use and land-cover mapping is a more important role to decide the policy for watershed planning and management project in the semiarid region. In an emerging countries, fast industrialization and urbanization impose a significant threat to the natural atmosphere. The remote sensing and GIS techniques are crucial roles in the study of land-use and land-cover mapping during the years of 2007, 2014, and 2017. The main objective of this is to prepare the land-use and NDVI maps in the years of 2008, 2014 and 2017; these maps have prepared from satellite data using the supervised classification method. A normalized difference vegetation index map (NDVI) was done by using Landsat 8 and LISS-III satellite data. NDVI values play a major role in monitoring the vegetation and variation in land-use and land-cover classes. In these maps, four types of land are divided into four classes as agriculture, built-up, wasteland, and water body. The results of study show that agriculture land of 18.71% (158.24 Ha), built-up land of 0.62% (5.31 Ha), wasteland of 40.33% (341.02 Ha), and water body land of 17.39% (147 Ha) are increased. Land-use and land-cover maps and NDVI values show that agriculture land of 22.97% (194.29 Ha), 5.46% (14.59 Ha), and 0.08% (0.22 Ha) decreases during the years of 2008, 2014, and 2017. The results directly indicate that the supervised classification method has been the accurate identified feature in the land-use map classes. This classification method has been given the better accuracy (95%) from spatiotemporal satellite data. The accuracy was also tally with ground-truth and Google earth information. These results can be a very useful for the land-use policy, watershed planning, and management with natural resources, animals, and ecological systems.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3