An in-depth comparative analysis of data-driven and classic regression models for scour depth prediction around cylindrical bridge piers

Author:

Fuladipanah MehdiORCID,Hazi Mohammad Azamathulla,Kisi Ozgur

Abstract

AbstractThe study focuses on the critical concern of designing secure and resilient bridge piers, especially regarding scour phenomena. Traditional equations for estimating scour depth are limited, often leading to inaccuracies. To address these shortcomings, modern data-driven models (DDMs) have emerged. This research conducts a comprehensive comparison involving DDMs, including support vector machine (SVM), gene expression programming (GEP), multilayer perceptron (MLP), gradient boosting trees (GBT) and multivariate adaptive regression spline (MARS) models, against two regression equations for predicting scour depth around cylindrical bridge piers. Evaluation employs statistical indices, such as root-mean-square error (RMSE), coefficient of determination (R2), mean average error (MAE) and normalized discrepancy ratio (S(DDRmax)), to assess their predictive performance. A total of 455 datasets from previous research papers are employed for assessment. Dimensionless parameters Froude number $$\left( {Fr = \frac{U}{{\sqrt {gy} }}} \right)$$ F r = U gy , Pier Froude number $$Fr_{P} = \frac{U}{{\sqrt {g^{\prime } D} }}$$ F r P = U g D , and the ratio of scour depth to pier diameter $$(\frac{\text{y}}{{\text{D}}})$$ ( y D ) are carefully selected as influential model inputs through dimensional analysis and the gamma test. The results highlight the superior performance of the SVM model. In the training phase, it exhibits an RMSE of 0.1009, MAE of 0.0726, R2 of 0.9401, and SDDR of 2.9237. During testing, the SVM model shows an RMSE of 0.023, MAE of 0.017, R2 of 0.984, and SDDR of 5.301. Additionally, it has an average error of − 0.065 and a total error of − 20.642 in the training set and an average error of − 0.005 and a total error of − 0.707 in the testing set. Conversely, the M5 model exhibits the lowest accuracy. The statistical metrics unequivocally establish the SVM model as significantly outperforming the experimental models, placing it in a higher echelon of predictive accuracy.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3