Abstract
AbstractGroundwater potential of some parts of Cross River State, Nigeria, was assessed involving vertical electrical sounding (VES) and high-resolution aeromagnetic methods (HRAM). The VES and HRAM dataset were used to delineate the hydro-lithostratigraphic units and map the spatial distributions of geologic structures, respectively. The electro-stratigraphic sections revealed the various hydro-lithostratigraphic units composed of fractured/weathered crystalline basement, sandstones, siltstones, sandy shales, and highly baked and fractured shales occurring at different depths. Generally, the unsaturated top layer is composed of shales, marl, clay, silt, gravel and lateritic materials with resistivity ranging from ~ 3.0 to ~ 550 Ω m. This layer is underlain by various aquifer units like sandstones, siltstones, fractured shales and limestone/marl, and fractured/weathered basement occurring at different depths (~ 30 to ≤ 100 m) as revealed by the electro-stratigraphic sections obtained in the study area. In the Calabar Flank (CF), Oban Massif (OM) and Ikom-Mamfe Embayment (IME), the apparent resistivity for these hydro-lithostratigraphic units varied between ~ 8.50 and ~ 59.50 Ω m, ~ 120.2 and ~ 1562.6 Ω m and ~ 30.8 and ~ 277.2 Ω m, respectively. The enhanced total magnetic intensity maps and source parameter imaging result showed that the OM and IME are characterized by high concentration of short-wavelength anomalies, while the CF is dominated by relatively undisturbed thick sedimentation (~ 6217 m). HRAM results show that such areas are predominated by geologic structures like faults, fractures, fissure, dyke swamps, etc. caused by tectonics. Such geologic structures create secondary porosity and enhance permeability. From all the results obtained, OM and IME represent areas with moderate groundwater potential. The CF dominated by argillites with no significant tectonic activity is observed to have low groundwater potential.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology
Reference71 articles.
1. Abolo MG (2008) Geology and petroleum potential of the Mamfe basin, Cameroon, Central Africa. Afr Geosci Rev 12:65–77
2. Adeleye DR, Fayose FA (1978) Stratigraphy of the type section of Awi Formation, Odukpani area, Southern Nigeria. J Min Geol 15:33–57
3. Ajonina HN, Ajibola OA, Bassey CE (2002) The Mamfe Basin, SE Nigeria and SW Cameroon: a review of the basin filling model and tectonic evolution. J Geosci Soc Cameroon 1:24–25
4. Akpabio EM, Watson NM, Ite UE, Ukpong IE (2008) Integrated water resources management in Cross River Basin, Nigeria. Int J Water Resour Dev 23(2):691–708
5. Akpan AE, Ugbaja AN, George NJ (2013) Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria. J Environ Earth Sci 70:1435–1456
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献