Modeling stage–discharge–sediment using support vector machine and artificial neural network coupled with wavelet transform

Author:

Kumar Manish,Kumar Pravendra,Kumar Anil,Elbeltagi Ahmed,Kuriqi AlbanORCID

Abstract

AbstractMany real water issues involve rivers’ sediment load or the load that rivers can bring without degrading the fluvial ecosystem. Therefore, the assessment of sediments carried by a river is also crucial in the planning and designing of various water resource projects. In the current study, five different data-driven techniques, namely artificial neural network (ANN), wavelet-based artificial neural network (WANN), support vector machine (SVM), wavelet-based support vector machine (WSVM), and multiple-linear regression (MLR) techniques, were employed for time-series modeling of daily suspended sediment concentration (SSC). Hydrological datasets containing the daily stage (h), discharge (Q), and SSC for 10 years (2004–2013) from June to October at Adityapur and Ghatshila station of Subernrekha river basin, Jharkhand, India, were considered for analysis. The Gamma test was used to determine the input variables in the first step. Various combinations were made by lagging the maximum three-day time step for predicting current-day SSC. The outcomes of ANN, SVM, WAAN, WSVM, and MLR models were evaluated with the actual values of SSC based on statistical metrics. Pearson correlation coefficient (PCC), root-mean-square error (RMSE), Nash–Sutcliffe efficiency (NSE), and Wilmot index (WI) as well as visual inspection of time variation, scatter plots, and Taylor diagrams. Our results stated that the WSVM model discovered the best trustworthy models among all existing models. PCC, RMSE, NSE, and WI values were 0.844 and 0.781, 0.096 g/l and 0.057 g/l, 0.711 and 0.591, 0.907 and 0.878, respectively, throughout the training and testing processes at the Adityapur site. Also, at the Ghatshila location, it was the most accurate model. During the training and testing stages, PCC, RMSE, NSE, and WI values were 0.928 and 0.751, 0.117 g/l and 0.095 g/l, 0.861 and 0.541, 0.962 and 0.859, respectively. Our findings showed that the WANN model was the second-best model during the testing phase for both sites. Hence, the WSVM technique can model SSC at this location and other similar (i.e., geomorphology and flow regime type) rivers.

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3