Effect of 90° elbows on pump inlet flow conditions

Author:

Ferreira Ronaldo Novaes,da Rosa Leonardo Machado,Janzen Johannes GérsonORCID

Abstract

AbstractThe use of 90° elbows upstream of a pump inlet can distort the approach flow resulting in spatial and temporal velocity variations and swirling flow that negatively affect pump performance and increase maintenance requirements. In order to attend these flow conditions, pumps have to be installed according to generally accepted standards such as ANSI/HI 9.8. (American national standard for rotodynamic pumps for pump intake design, Hydraulic Institute, Parsippany, 2012). However, in these standards, there is little information about the minimum distance between single and double 90° elbows and a pump. Therefore, this paper presents results for the pipe flow downstream of 90° elbows and its attendance to the standards at the inlet of pumps using Computational Fluid Dynamics (CFD). Prior to its application, the CFD model was validated by comparing the computed velocity profiles with experimental results downstream of a 90° elbow. It is found that it is necessary 3 to 16 pipe diameters from the elbow in order to reduce the swirling flow. The velocity distribution at a cross section was never uniform up to 50 pipe diameters downstream of the elbows. The temporal velocity fluctuation was always low. It is concluded that the specifications of downstream pipe lengths in the current inlet pipe flow standards are not sufficient to achieve the desired flow at the pump inlet.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3