Abstract
AbstractIn the sight of the ever-increasing significance of green-based iron nanoparticles especially in wastewater treatment applications is a compelling reason for their use in a waste prevention opportunity, safer environment and benign precursor materials become the vital considerations. Hence, in the current investigation, an efficient co-precipitation technique was applied to prepare highly active chitosan-coated magnetic iron oxide that is applied for wastewater remediation. In the current investigation, chitosan coupled with magnetite nanoparticles namely CS-M was attained by coupling chitosan (CS) with magnetite nanoparticles via simple co-precipitation in different weight proportions and the attained samples labeled as CS-M-(2:1), CS-M-(3:1) and CS-M-(1:2). The structure, morphology and characteristics of the prepared samples were characterized using X-ray diffraction spectroscopy and transmission electron microscopy (TEM). The catalytic oxidation activity of the prepared samples was investigated to eliminate Basic Blue 9 (BB9) dye from aqueous effluent as simulated textile polluted stream. The experimental data exposed almost BB9 dye emanation. The system parameters revealed the maximal BB9 oxidation (99%) was attained within 2 h of irradiance time. Box–Behnken design factorial design based on response surface methodology was applied to optimize the Fenton’s system (CS-M-(2:1)/H2O2) parameters to maximize the efficiency 2.4 and 767 mg/L of CS-M and H2O2,respectively, at pH 7.0. The experimental data exposed that CS-M-(2:1) is signified as the optimal catalyst mixture. The kinetic data verify the oxidation system follows the second-order reaction kinetic model. Further, thermodynamic variables predicted that the reaction is endothermic and non-spontaneous in nature. Hence, the catalyst could be environmental benign and the evaluation introduces the role of engineers and chemists in a world for a sustainable material use.
Publisher
Springer Science and Business Media LLC
Subject
Water Science and Technology
Reference69 articles.
1. Abdou KA, Mohammed AN, Moselhy W, Farghali AA (2018) Assessment of modified rice husk and sawdust as bio-adsorbent for heavy metals removal using nano particles in fish farm. Asian J Anim Vet Adv 13:180–188
2. Adesina OA, Abdulkareem F, Yusuff AS, Lala M, Okewale A (2019) Response surface methodology approach to optimization of process parameter for coagulation process of surface water using Moringa oleifera seed. S Afr J Chem Eng 28:46–51
3. Ahmadi M, Behin J, Mahnam AR (2016) Kinetics and thermodynamics of peroxydisulfate oxidation of reactive yellow 84. J Saudi Chem Soc 20:644–650
4. Al MF, Mo’ayyad S, Ahmad S, Mohammad A-S (2008) Impact of Fenton and ozone on oxidation of wastewater containing nitroaromatic compounds. J Environ Sci 20:675–682
5. Amiri SA, Mohseni Bandpei MA, Javanshir K, Rezasoltani A, Biglarian A (2017) The effect of different exercise programs on size and function of deep cervical flexor muscles in patients with chronic nonspecific neck pain. Am J Phys Med Rehabil 96(8):582–588. https://doi.org/10.1097/PHM.0000000000000721
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献