Fast Columnar Physics Analyses of Terabyte-Scale LHC Data on a Cache-Aware Dask Cluster

Author:

Eich Niclas,Erdmann Martin,Fackeldey PeterORCID,Fischer Benjamin,Noll Dennis,Rath Yannik

Abstract

AbstractThe development of an LHC physics analysis involves numerous investigations that require the repeated processing of terabytes of data. Thus, a rapid completion of each of these analysis cycles is central to mastering the science project. We present a solution to efficiently handle and accelerate physics analyses on small-size institute clusters. Our solution uses three key concepts: vectorized processing of collision events, the “MapReduce” paradigm for scaling out on computing clusters, and efficiently utilized SSD caching to reduce latencies in IO operations. This work focuses on the latter key concept, its underlying mechanism, and its implementation. Using simulations from a Higgs pair production physics analysis as an example, we achieve an improvement factor of 6.3 in the runtime for reading all input data after one cycle and even an overall speedup of a factor of 14.9 after 10 cycles, reducing the runtime from hours to minutes.

Funder

RWTH Aachen University

Publisher

Springer Science and Business Media LLC

Subject

Nuclear and High Energy Physics,Computer Science (miscellaneous),Software

Reference16 articles.

1. Marcel R et al (2017) Design and execution of make-like, distributed Analyses based on Spotify’s Pipelining Package Luigi. arXiv:1706.00955 [physics.data-an]

2. Harris Charles R et al (2020) Array programming with NumPy. Nature. https://doi.org/10.1038/s41586-020-2649-2

3. Jeffrey D, Sanjay G (2004) “MapReduce: Simplified Data Processing on Large Clusters”. In: OSDI’04: Sixth Symposium on Operating System Design and Implementation. San Francisco, CA, pp. 137–150

4. Dask Development Team (2016) Dask: Library for dynamic task scheduling. https://dask.org. Accessed 26 May 2022

5. Lindsey G et al (2021) CoffeaTeam/coffea: Release v0.7.11. Version v0.7.11. https://doi.org/10.5281/zenodo.5762406

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Distributed Execution of Dask on HPC: A Case Study;2023 World Conference on Communication & Computing (WCONF);2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3