More than a reposition tool: additional wire cerclage leads to increased load to failure in plate osteosynthesis for supracondylar femoral shaft fractures

Author:

Bliemel ChristopherORCID,Anrich Dan,Knauf Tom,Oberkircher Ludwig,Eschbach Daphne,Klasan Antonio,Debus Florian,Ruchholtz Steffen,Bäumlein Martin

Abstract

Abstract Introduction Surgical treatment of supracondylar femoral fractures can be challenging. An additional wire cerclage is a suggested way to facilitate fracture reduction prior to plate osteosynthesis. Denudation to the periosteum remains a problematic disadvantage of this procedure. This study analyzed the effect of an additional wire cerclage on the load to failure in plate osteosynthesis of oblique supracondylar femoral shaft fractures. Materials and methods On eight pairs of non-osteoporotic human femora (mean age 74 years; range 57–95 years), an unstable AO/OTA 32-A2.3 fracture was established. All specimens were treated with a polyaxially locking plate. One femur of each pair was randomly selected to receive an additional fracture fixation with a wire cerclage. A servohydraulic testing machine was used to perform an incremental cyclic axial load with a load to the failure mode. Results Specimens stabilized with solely plate osteosynthesis failed at a mean load of 2450 N (95% CI: 1996–2904 N). In the group with an additional wire cerclage, load to failure was at a mean of 3100 N (95% CI: 2662–3538 N) (p = 0.018). Compression deformation with shearing of the condyle region through cutting of screws out of the condylar bone was the most common reason for failure in both groups of specimens. Whereas axial stiffness was comparable between both groups (p = 0.208), plastic deformation of the osteosynthesis constructs differed significantly (p = 0.035). Conclusions An additional wire cerclage significantly increased the load to failure. Therefore, an additional cerclage represents more than just a repositioning aid. With appropriate fracture morphology, a cerclage can significantly improve the strength of the osteosynthesis.

Funder

Philipps-Universität Marburg

Publisher

Springer Science and Business Media LLC

Subject

Orthopedics and Sports Medicine,General Medicine,Surgery,Surgery

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3