CID: a framework for the cognitive analysis of composite instructional designs

Author:

Loibl KatharinaORCID,Leuders TimoORCID,Glogger-Frey IngaORCID,Rummel NikolORCID

Abstract

AbstractInstruction often spans multiple phases (e.g., phases of discovery learning, instructional explanations, practice) with different learning goals and different pedagogies. For any combination of multiple phases, we use the term composite instructional design (CID). To understand the mechanisms underlying composite instructional designs, we propose a framework that links three levels (knowledge, learning, instruction) across multiple phases: Its core element is the specification of learning mechanisms that explain how intermediate knowledge (i.e., the knowledge state between instructional phases) generated by the learning processes of one phase impacts the learning processes of a following phase. The CID framework serves as a basis for conducting research on composite instructional designs based on a cognitive analysis, which we exemplify by discussing existing research in light of the framework. We discuss how the CID framework supports understanding of the effects of composite instructional designs beyond the individual effects of the single phases through an analysis of effects on intermediate knowledge (i.e., the knowledge state resulting from a first instructional phase) and how it alters the learning processes initiated by the instructional design of a second phase. We also aim to illustrate how CID can help resolve contradictory findings of prior studies (e.g., studies that did or did not find beneficial effects of problem solving prior to instruction). Methodologically, we highlight the challenge of altering one learning mechanism at a time as experimental variations on the instructional design level often affect multiple learning processes across phases.

Funder

Pädagogische Hochschule Freiburg

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3