Can failure be made productive also in Bayesian reasoning? A conceptual replication study

Author:

Loibl KatharinaORCID,Leuders TimoORCID

Abstract

AbstractThe composite instructional design PS-I combines an initial problem-solving phase (PS) with a subsequent explicit instruction phase (I). PS-I has proven effective for conceptual learning in comparison to instructional designs with the reverse order (I-PS), especially when the explicit instruction phase productively builds on students’ erroneous or incomplete (i.e., failed) solution attempts. Building on student solutions during explicit instruction may support students to integrate their intermediate knowledge (acquired during problem solving) with the newly introduced knowledge components. While these effects have been shown for learning the concept of variance in multiple studies, it remains unclear whether these effects generalize to other situations. We conducted a conceptual replication study of Loibl and Rummel (Loibl and Rummel, Learning and Instruction 34:74–85, 2014a) choosing Bayesian reasoning as target knowledge. 75 students were assigned to four conditions in a 2 × 2 design (factor 1: PS-I vs. I-PS; factor 2: instruction phase with vs. without typical student solutions). In contrast to Loibl and Rummel (2014a), we did neither find a main effect for PS-I vs. I-PS, nor for building on typical student solutions. The missing effect of PS-I can be explained by the fact that students merely activated their prior knowledge on probabilities without exploring the problem-solving space and without becoming aware of their knowledge gaps. The missing effect of building on typical student solutions can be explained by a mismatch of the solutions generated and the ones included in the explicit instruction. Therefore, building on typical student solutions did not foster an integration of students’ intermediate knowledge and the introduced knowledge components.

Funder

Deutsche Telekom Stiftung

Pädagogische Hochschule Freiburg

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3