3D printed spinning cup-shaped device for immunoaffinity solid-phase extraction of diclofenac in wastewaters

Author:

Carrasco-Correa Enrique Javier,Herrero-Martínez José Manuel,Simó-Alfonso Ernesto Francisco,Knopp Dietmar,Miró ManuelORCID

Abstract

Abstract This article reports current research efforts towards designing bespoke microscale extraction approaches exploiting the versatility of 3D printing for fast prototyping of novel geometries of sorptive devices. This is demonstrated via the so-called 3D printed spinning cup-based platform for immunoextraction of emerging contaminants using diclofenac as a model analyte. A new format of rotating cylindrical scaffold (containing a semispherical upper cavity) with enhanced coverage of biorecognition elements, and providing elevated enhancement factors with no need of eluate processing as compared with other microextraction stirring units is proposed. Two distinct synthetic routes capitalized upon modification of the acrylate surface of stereolithographic 3D printed parts with hexamethylenediamine or branched polyethyleneimine chemistries were assayed for covalent binding of monoclonal diclofenac antibody.Under the optimized experimental conditions, a LOD of 108 ng L−1 diclofenac, dynamic linear range of 0.4–1,500 µg L–1, and enrichment factors > 83 (for near-exhaustive extraction) were obtained using liquid chromatography coupled with UV–Vis detection. The feasibility of the antibody-laden device for handling of complex samples was demonstrated with the analysis of raw influent wastewaters with relative recoveries ranging from 102 to 109%. By exploiting stereolithographic 3D printing, up to 36 midget devices were fabricated in a single run with an estimated cost of mere 0.68 euros per 3D print and up to 16 €/device after the incorporation of the monoclonal antibody. Graphical abstract

Funder

Ministerio de Ciencia, Innovación y Universidades

Secretaría de Estado de Investigación, Desarrollo e Innovación

Universitat de Valencia

Publisher

Springer Science and Business Media LLC

Subject

Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3