Abstract
Abstract The design of a sandwich-type SERS immunoassay (surface-enhanced Raman spectroscopy) is demonstrated operating in dual surface enhancement and dual-tag paradigm. The capture and detection antibodies are linked to two SERS-active substrates and form together the three-dimensional (3D) structure after specific binding to interleukin 6. A variety of metal combinations is tested (Au–Ag, Au–Au, and Ag–Ag), but an enhanced electromagnetic field is generated only due to coupling of Ag and Au nanoparticles with an Au hexagonal nanoarray. The amplified in that way Raman signals improve the limit of detection over 3 times in comparison to the assay with only one SERS-active substrate. It is also shown that the proper readout of the true-positive signal can be achieved in assays with two Raman tags, and this approach also improves LOD. For the optimal combination of the metal–metal junction and Raman tags, a linear relationship between the Raman signal and the concentration of IL-6 is obtained in the range 0–1000 pg⋅mL−1with LOD of 25.2 pg mL−1and RSD < 10%. The presented proof-of-concept of the SERS immunoassay with the dual-enhancement and dual-tag opens additional opportunities for engineering reliable SERS biosensing.
Graphical abstract
Publisher
Springer Science and Business Media LLC
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献