High-sensitivity biosensor based on SERS integrated with dendrimer-assisted boronic acid-functionalized magnetic nanoparticles for IL-6 detection in human serum

Author:

Wang YingORCID,Guan Ming,Hu CunmingORCID,Mi Fang,Geng Pengfei,Li Yingjun

Abstract

Abstract High-sensitivity quantitative analysis of sepsis disease markers in circulating blood is essential for sepsis early diagnosis, rapid stratification, and interventional treatment. Herein, a high-sensitivity biosensor combining surface-enhanced Raman spectroscopy (SERS) and functionalized magnetic materials was developed to quantitatively detect interleukin-6 (IL-6), a glycoprotein disease marker closely related to sepsis. First, boronic acid-functionalized magnetic nanomaterials with high adsorption performance were synthesized by utilizing the branched polyethyleneimine to provide many binding sites for boronic acid. Under antibody-free conditions, dendrimer-assisted boronic acid-functionalized magnetic nanomaterials selectively capture glycoproteins in complex biological samples as bio-capture element. Then, a core–shell bimetallic material with plenty of ‘hot spots’ was designed and synthesized as the enhancement substrate. The 4-Mercaptobenzonitrile (4-MP) with a characteristic peak at 2224 cm−1 (Raman-silent region) was embedded as the Raman reporter to form a SERS immune probe with highly efficient electromagnetic enhancement effect, achieving specific recognition and high-sensitivity detection of IL-6 on bio-capture elements. Using this strategy for quantitative analysis of IL-6, a wide detection range (0.5–5000 pg ml−1) and a low detection limit (0.453 pg ml−1) were obtained. Moreover, this method exhibited excellent detection performance for IL-6 in human serum samples, demonstrating its potential promise in screening clinically relevant diseases. The biosensor presented here not only provides a novel and universally applicable sensing strategy for the enrichment and detection of trace glycoprotein disease markers, but also the application of a portable Raman spectrometer provides a more reliable experimental basis for the diagnosis and treatment of major diseases in the clinic or remote and deprived areas.

Funder

Doctoral Research Innovation and Cultivation Project

National Natural Science Foundation of China

Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region

Postgraduate Scientific Research Innovation Project of Xinjiang Uygur Autonomous Region

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,General Materials Science,General Chemistry,Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3