MEmoFC: introducing the Multilingual Emotional Football Corpus

Author:

Braun NadineORCID,van der Lee ChrisORCID,Gatti LorenzoORCID,Goudbeek MartijnORCID,Krahmer EmielORCID

Abstract

AbstractThis paper introduces a new corpus of paired football match reports, the Multilingual Emotional Football Corpus, (MEmoFC), which has been manually collected from English, German, and Dutch websites of individual football clubs to investigate the way different emotional states (e.g. happiness for winning and disappointment for losing) are realized in written language. In addition to the reports, it also contains the statistics for the selected matches. MEmoFC is a corpus consisting of comparable subcorpora since the authors of the texts report on the same event from two different perspectives—the winner’s and the loser’s side, and from an arguably more neutral perspective in tied matches. We demonstrate how the corpus can be used to investigate the influence of affect on the reports through different approaches and illustrate how game outcome influences (1) references to the own team and the opponent, and (2) the use of positive and negative emotion terms in the different languages. The MEmoFC corpus, together with the analyzed aspects of emotional language will open up new approaches for targeted automatic generation of texts.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Tilburg University

Publisher

Springer Science and Business Media LLC

Subject

Library and Information Sciences,Linguistics and Language,Education,Language and Linguistics

Reference76 articles.

1. Anthony, L. (2004). AntConc: A learner and classroom friendly, multi-platform corpus analysis toolkit. Proceedings of IWLeL (pp. 7–13).

2. Baker-Ward, L. E., Eaton, K. L., & Banks, J. B. (2005). Young soccer players' reports of a tournament win or loss: Different emotions, different narratives. Journal of Cognition and Development, 6(4), 507–527.

3. Basile, V. (2013). Sentiment analysis on Italian tweets. Paper presented at the Proceedings of the 4th Workshop on Computational Approaches to Subjectivity, Sentiment and Social Media Analysis.

4. Bateman, J. A., & Paris, C. (1989). Phrasing a text in terms the user can understand. Paper presented at the IJCAI.

5. Bautin, M., Vijayarenu, L., & Skiena, S. (2008). International sentiment analysis for news and blogs. Paper presented at the ICWSM.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3