ARRB1 downregulates acetaminophen-induced hepatoxicity through binding to p-eIF2α to inhibit ER stress signaling

Author:

Luo Yujun,Lei Yiming,Zhou Haoxiong,Chen Yan,Liu Huiling,Jiang Jie,Xu Chengfang,Wu Bin

Abstract

AbstractAcetaminophen (APAP) stands as the predominant contributor to drug-induced liver injury (DILI), and limited options are available. β-Arrestin1 (ARRB1) is involved in numerous liver diseases. However, the role of ARRB1 in APAP-induced liver injury remained uncertain. Wild-type (WT) and ARRB1 knockout (KO) mice were injected with APAP and sacrificed at the indicated times. The histological changes, inflammation, endoplasmic reticulum (ER) stress, and apoptosis were then evaluated. Hepatic cell lines AML-12 and primary hepatocytes were used for in vitro analyses. Systemic ARRB1-KO mice were susceptible to APAP-induced hepatotoxicity, as indicated by larger areas of centrilobular necrosis area and higher levels of ALT, AST, and inflammation level. Moreover, ARRB1-KO mice exhibited increased ER stress (indicated by phosphorylated α subunit of eukaryotic initiation factor 2 (p-eIF2α)-activating transcription factor 4 (ATF4)-CCAAT-enhancer-binding protein homologous protein (CHOP)) and apoptosis (indicated by cleaved caspase 3). Further rescue experiments demonstrated that the induction of apoptosis was partially mediated by ER stress. Overexpression of ARRB1 alleviated APAP-induced ER stress and apoptosis. Moreover, co-IP analysis revealed that ARRB1 directly bound to p-eIF2α and eIF2α. ARRB1 protected against APAP-induced hepatoxicity through targeting ER stress and apoptosis. ARRB1 is a prospective target for treating APAP-induced DILI. Graphical Abstract ARRB1 mitigates APAP-induced hepatotoxicity through regulating ER stress (p-eIF2α-ATF4-CHOP) and apoptosis (p-JNK and cleaved caspase 3) via binding to p-eIF-2α

Publisher

Springer Science and Business Media LLC

Subject

Health, Toxicology and Mutagenesis,Cell Biology,Toxicology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3