1. Becker S, Bobin J, Candès E (2009) NESTA: A fast and accurate first-order method for sparse recovery. SIAM J Imaging Sci 4(1):1–39
2. Bennett KP (1999) Combining support vector and mathematical programming methods for classification. In: Schölkopf B, Burges CJC, Smola AJ (eds) Advances in Kernel methods: support vector learning. MIT Press, Cambridge, pp 307–326
3. Bi J, Bennett KP, Embrechts M, Breneman CM, Song M (2003) Dimensionality reduction via sparse support vector machines. J Mach Learn Res 3:1229–1243
4. Cao J, Zhang L, Wang B, Li F, Yang J (2015) A fast gene selection method for multi-cancer classification using multiple support vector data description. J Biomed Inform 53(2):381–389
5. Chang CC, Lin CJ (2001) LIBSVM: a library for support vector machines.
http://www.csie.ntu.edu.tw/cjlin/libsvm