Short term electric load forecasting using hybrid algorithm for smart cities
Author:
Funder
Taif University
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-020-01728-x.pdf
Reference44 articles.
1. Mujeeb S, Javaid N, Ilahi M, Wadud Z, Ishmanov F, Afzal M (2019) Deep long short-term memory: a new price and load forecasting scheme for big data in smart cities. Sustainability 11(4):1–29
2. Ahmad A, Javaid N, Mateen A, Awais M, Khan Z (2019) Short-term load forecasting in smart grids: an intelligent modular approach. Energies 12(164):1–21
3. Elattar E, Goulermas J, Wu QH (2010) Electric load forecasting based on locally weighted support vector regression. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 40(4):438–447
4. Papalekopulos AD, Hesterberg TC (1990) A regression-based approach to short-term system load forecasting. IEEE Transactions on Power Systems 5(4):1535–1547
5. Taylor JW, de Menezes LM, McSharry PE (2006) A comparison of univariate methods for forecasting electricity demand up to a day ahead. International Journal of Forecasting 22(1):1–16
Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Toward a smart forecasting model in supply chain management: A case study of coffee in Vietnam;Journal of Forecasting;2024-08-18
2. Performance analysis of deep learning-based electric load forecasting model with particle swarm optimization;Heliyon;2024-08
3. A Contiguous Temporal Chebyshev Convolutional Optimized Network (CoC-TemNet) Model for Energy Prediction in IoT Enabled Smart City Networks;IEEE Internet of Things Journal;2024-07-01
4. Smart Homes, Smart Choices: Using Big Data to Boost Energy Efficiency and Environmental Sustainability;Electric Power Components and Systems;2024-04-17
5. Electricity Load Demand Prediction for Microgrid Energy Management System Using Hybrid Adaptive Barnacle‐Mating Optimizer with Artificial Neural Network Algorithm;Energy Technology;2024-03-09
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3