Deep Long Short-Term Memory: A New Price and Load Forecasting Scheme for Big Data in Smart Cities

Author:

Mujeeb Sana,Javaid NadeemORCID,Ilahi Manzoor,Wadud Zahid,Ishmanov Farruh,Afzal Muhammad

Abstract

This paper focuses on analytics of an extremely large dataset of smart grid electricity price and load, which is difficult to process with conventional computational models. These data are known as energy big data. The analysis of big data divulges the deeper insights that help experts in the improvement of smart grid’s (SG) operations. Processing and extracting of meaningful information from data is a challenging task. Electricity load and price are the most influential factors in the electricity market. For improving reliability, control and management of electricity market operations, an exact estimate of the day ahead load is a substantial requirement. Energy market trade is based on price. Accurate price forecast enables energy market participants to make effective and most profitable bidding strategies. This paper proposes a deep learning-based model for the forecast of price and demand for big data using Deep Long Short-Term Memory (DLSTM). Due to the adaptive and automatic feature learning mechanism of Deep Neural Network (DNN), the processing of big data is easier with LSTM as compared to the purely data-driven methods. The proposed model was evaluated using well-known real electricity markets’ data. In this study, day and week ahead forecasting experiments were conducted for all months. Forecast performance was assessed using Mean Absolute Error (MAE) and Normalized Root Mean Square Error (NRMSE). The proposed Deep LSTM (DLSTM) method was compared to traditional Artificial Neural Network (ANN) time series forecasting methods, i.e., Nonlinear Autoregressive network with Exogenous variables (NARX) and Extreme Learning Machine (ELM). DLSTM outperformed the compared forecasting methods in terms of accuracy. Experimental results prove the efficiency of the proposed method for electricity price and load forecasting.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3