A hybrid framework for mining high-utility itemsets in a sparse transaction database
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
http://link.springer.com/article/10.1007/s10489-017-0932-1/fulltext.html
Reference36 articles.
1. Agrawal R, Srikant R et al (1994) Fast algorithms for mining association rules Proceeding 20th international conference on very large data bases, VLDB, vol 1215, pp 487–499
2. Ahmed C F, Tanbeer S K, Jeong B S, Lee Y K (2009) Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans Knowl Data Eng 21(12):1708–1721. doi: 10.1109/TKDE.2009.46
3. Ahmed C F, Tanbeer S K, Jeong B S, Lee Y K (2011) Huc-prune: an efficient candidate pruning technique tomine high utility patterns. Appl Intell 34(2):181–198. doi: 10.1007/s10489-009-0188-5
4. Ahmed CF, Tanbeer SK, Jeong BS, Choi HJ (2012) Interactive mining of high utility patterns over data streams. Expert Syst Appl 39(15):11,979–11,991. doi: 10.1016/j.eswa.2012.03.062 . http://www.sciencedirect.com/science/article/pii/S0957417412005854
5. Bansal R, Dawar S, Goyal V (2015) An efficient algorithm for mining high-utility itemsets with discount notion. Springer International Publishing, Cham, pp 84–98. doi: 10.1007/978-3-319-27057-9_6
Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Effective approaches for mining correlated and low-average-cost patterns;Knowledge-Based Systems;2024-10
2. Efficient Top-k Frequent Itemset Mining on Massive Data;Data Science and Engineering;2024-02-06
3. Improved adaptive-phase fuzzy high utility pattern mining algorithm based on tree-list structure for intelligent decision systems;Scientific Reports;2024-01-10
4. Efficient mining of concise and informative representations of frequent high utility itemsets;Engineering Applications of Artificial Intelligence;2023-11
5. High utility itemsets mining from transactional databases: a survey;Applied Intelligence;2023-09-16
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3