An Efficient Algorithm for Mining High-Utility Itemsets with Discount Notion
Author:
Publisher
Springer International Publishing
Link
http://link.springer.com/content/pdf/10.1007/978-3-319-27057-9_6
Reference18 articles.
1. Medici, F., Hawa, M.I., Giorgini, A., Panelo, A., Solfelix, C.M., Leslie, R.D., Pozzilli, P.: Antibodies to gad65 and a tyrosine phosphatase-like molecule ia-2ic in filipino type 1 diabetic patients. Diabetes Care 22(9), 1458–1461 (1999)
2. Yin, J., Zheng, Z., Cao, L.: Uspan: an efficient algorithm for mining high utility sequential patterns. In: Proceedings of the 18th ACM SIGKDD, pp. 660–668 (2012)
3. Wu, C.-W., Lin, Y.-F., Yu, P.S., Tseng, V.S.: Mining high utility episodes in complex event sequences. In: Proceedings of the 19th ACM SIGKDD, pp. 536–544 (2013)
4. Dawar, S., Goyal, V.: Up-hist tree: An efficient data structure for high utility pattern mining from transaction databases. In: International Database Engineering and Applications Symposium (2015)
5. Lecture Notes in Computer Science;P Fournier-Viger,2014
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. High Utility Item-Set Mining From Retail Market Data Stream With Various Discount Strategies;International Journal of Software Innovation;2022-04-29
2. An Effective Data Mining Technique for Extracting High Utility Item Sets;2022 2nd International Conference on Advance Computing and Innovative Technologies in Engineering (ICACITE);2022-04-28
3. SMIM Framework to Generalize High-Utility Itemset Mining;Advanced Data Mining and Applications;2022
4. High Utility Item-set Mining from retail market data stream with various discount strategies using EGUI-tree;Journal of Ambient Intelligence and Humanized Computing;2021-07-07
5. A Survey of High Utility Itemset Mining;Studies in Big Data;2019
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3