Improved generalization performance of convolutional neural networks with LossDA

Author:

Liu Juncheng,Zhao YiliORCID

Abstract

AbstractIn recent years, convolutional neural networks (CNNs) have been used in many fields. Nowadays, CNNs have a high learning capability, and this learning capability is accompanied by a more complex model architecture. Complex model architectures allow CNNs to learn more data features, but such a learning process tends to reduce the training model’s ability to generalize to unknown data, and may be associated with problems of overfitting. Although many regularization methods have been proposed, such as data augmentation, batch normalization, and Dropout, research on improving generalization performance is still a common concern in the training process of robust CNNs. In this paper, we propose a dynamically controllable adjustment method, which we call LossDA, that embeds a disturbance variable in the fully-connected layer. The trend of this variable is kept consistent with the training loss, while the magnitude of the variable can be preset to adapt to the training process of different models. Through this dynamic adjustment, the training process of CNNs can be adaptively adjusted. The whole regularization process can improve the generalization performance of CNNs while helping to suppress overfitting. To evaluate this method, this paper conducts comparative experiments on MNIST, FashionMNIST, CIFAR-10, Cats_vs_Dogs, and miniImagenet datasets. The experimental results show that the method can improve the model performance of Light CNNs and Transfer CNNs (InceptionResNet, VGG19, ResNet50, and InceptionV3). The average maximum improvement in accuracy of Light CNNs is 4.62%, F1 is 3.99%, and Recall is 4.69%. The average maximum improvement accuracy of Transfer CNNs is 4.17%, F1 is 5.64%, and Recall is 4.05%.

Funder

Yunnan Agricultural Basic Research Joint Special Project

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Artificial Intelligence

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3