SMDM: Tackling zero-shot relation extraction with semantic max-divergence metric learning
Author:
Publisher
Springer Science and Business Media LLC
Subject
Artificial Intelligence
Link
https://link.springer.com/content/pdf/10.1007/s10489-022-03596-z.pdf
Reference36 articles.
1. Alt C, Gabryszak A, Hennig L (2020) Probing linguistic features of sentence-level representations in relation extraction. In: Jurafsky D, Chai J, Schluter N, et al (eds) Proceedings of the 58th annual meeting of the association for computational linguistics, ACL 2020, Online, July 5-10, 2020. association for computational linguistics. https://doi.org/10.18653/v1/2020.acl-main.140, pp 1534–1545
2. Baldini Soares L, FitzGerald N, Ling J et al (2019) Matching the blanks: Distributional similarity for relation learning. In: Proceedings of the 57th Annual meeting of the association for computational linguistics. association for computational linguistics, Florence, Italy. https://doi.org/10.18653/v1/P19-1279. https://www.aclweb.org/anthology/P19-1279, pp 2895–2905
3. Califf ME, Mooney RJ (1997) Relational learning of pattern-match rules for information extraction. In: CoNLL97: Computational natural language learning. https://www.aclweb.org/anthology/W97-1002
4. Chen C, Li C (2021) ZS-BERT: towards zero-shot relation extraction with attribute representation learning. In: Toutanova K, Rumshisky A, Zettlemoyer L, et al (eds) Proceedings of the 2021 conference of the north american chapter of the association for computational linguistics: human language technologies, naacl-hlt 2021, online, June 6-11, 2021. association for computational linguistics. https://doi.org/10.18653/v1/2021.naacl-main.272, pp 3470–3479
5. Chen M, Zhang W, Zhang W et al (2019) Meta relational learning for few-shot link prediction in knowledge graphs. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference on natural language processing (emnlp-ijcnlp). association for computational linguistics, Hong Kong, China. https://doi.org/10.18653/v1/D19-1431. https://www.aclweb.org/anthology/D19-1431, pp 4217–4226
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Combining Semantic and Structural Features for Reasoning on Patent Knowledge Graphs;Applied Sciences;2024-08-04
2. A comprehensive review on zero-shot-learning techniques;Intelligent Decision Technologies;2024-06-07
3. A comprehensive review on zero-shot-learning techniques;Intelligent Decision Technologies;2024-04-17
4. Self-distillation framework for document-level relation extraction in low-resource environments;PeerJ Computer Science;2024-03-29
5. HCL: A Hierarchical Contrastive Learning Framework for Zero-Shot Relation Extraction;IEEE Transactions on Neural Networks and Learning Systems;2024
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3