Combining Semantic and Structural Features for Reasoning on Patent Knowledge Graphs

Author:

Zhang Liyuan12,Hu Kaitao3ORCID,Ma Xianghua3ORCID,Sun Xiangyu3

Affiliation:

1. College of Electronics and Information Engineering, Tongji University, Shanghai 201804, China

2. Shanghai IC Technology & Industry Promotion Center, Shanghai 201203, China

3. School of Electrical and Electronic Engineering, Shanghai Institute of Technology, Shanghai 201418, China

Abstract

To address the limitations in capturing complex semantic features between entities and the incomplete acquisition of entity and relationship information by existing patent knowledge graph reasoning algorithms, we propose a reasoning method that integrates semantic and structural features for patent knowledge graphs, denoted as SS-DSA. Initially, to facilitate the model representation of patent information, a directed graph representation model based on the patent knowledge graph is designed. Subsequently, structural information within the knowledge graph is mined using inductive learning, which is combined with the learning of graph structural features. Finally, an attention mechanism is employed to integrate the scoring results, enhancing the accuracy of reasoning outcomes such as patent classification, latent inter-entity relationships, and new knowledge inference. Experimental results demonstrate that the improved algorithm achieves an up to approximately 30% increase in the MRR index compared to the ComplEx model in the public Dataset 1; in Dataset 2, the MRR and Hits@n indexes, respectively, saw maximal improvements of nearly 30% and 112% when compared with MLMLM and ComplEx models; in Dataset 3, the MRR and Hits@n indexes realized maximal enhancements of nearly 200% and 40% in comparison with the MLMLM model. This effectively proves the efficacy of the refined model in the reasoning process. Compared to recently widely applied reasoning algorithms, it offers a superior capability in addressing complex structures within the datasets and accomplishing the completion of existing patent knowledge graphs.

Funder

Shanghai’s 2023 “Technology Innovation Action Plan” soft science research project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3