Publisher
Springer Science and Business Media LLC
Reference42 articles.
1. Abdi MH, Okeyo GO, Mwangi RW (2018) Matrix factorization techniques for context-aware collaborative filtering recommender systems: a survey. Comput Inf Sci 11(2):1–10
2. Chen H, Yin H, Wang W, Wang H, Nguyen QVH, Li X (2018) Pme: projected metric embedding on heterogeneous networks for link prediction. In: Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining, KDD ’18. Association for Computing Machinery, New York, pp 1177–1186
3. Dong Y, Chawla NV, Swami A (2017) Metapath2vec: Scalable representation learning for heterogeneous networks. In: Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, KDD ’17. Association for Computing Machinery, New York, pp 135–144
4. Epasto A, Perozzi B (2019) Is a single embedding enough? learning node representations that capture multiple social contexts. In: The world wide web conference, WWW ’19. Association for Computing Machinery, New York, pp 394–404
5. Gong J, Wang S, Wang J, Feng W, Peng H, Tang J, Yu PS (2020) Attentional graph convolutional networks for knowledge concept recommendation in MOOCs in a heterogeneous view. Association for Computing Machinery, New York, pp 79–88
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献