An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models
Author:
Funder
U.S. Department of Energy
Publisher
Springer Science and Business Media LLC
Subject
Industrial and Manufacturing Engineering,General Materials Science
Link
https://link.springer.com/content/pdf/10.1007/s40192-021-00213-8.pdf
Reference32 articles.
1. Schmidt J, Marques MRG, Botti S, Marques MAL (2019) Recent advances and applications of machine learning in solid-state materials science. Npj Comput Mater 5:1–36. https://doi.org/10.1038/s41524-019-0221-0
2. Maksov A et al (2019) Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2. Npj Comput Mater 5:1–8 https://doi.org/10.1038/s41524-019-0152-9
3. Zhang L, Lin DY, Wang H, Car R, Weinan E (2019) Active learning of uniformly accurate interatomic potentials for materials simulation. Phys Rev Mater 3:023804. https://doi.org/10.1103/PhysRevMaterials.3.023804
4. Li W, Field KG, Morgan D (2018) Automated defect analysis in electron microscopic images. Npj Comput Mater 4:36. https://doi.org/10.1038/s41524-018-0093-8
5. Aspuru-Guzik A, Persson KA (2018) Materials acceleration platform. Missi Innov - Innov Chall. 6
Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. High-throughput aqueous passivation behavior of thin-film vs. bulk multi-principal element alloys in sulfuric acid;Corrosion Science;2024-08
2. Leveraging Interpretable Features and Clustering Agreements for Assistive Materials Discovery;2023 Fifth International Conference on Transdisciplinary AI (TransAI);2023-09-25
3. An Experimental High-Throughput to High-Fidelity Study Towards Discovering Al–Cr Containing Corrosion-Resistant Compositionally Complex Alloys;High Entropy Alloys & Materials;2023-09
4. Combinatorial Reactive Sputtering with Auger Parameter Analysis Enables Synthesis of Wurtzite Zn2TaN3;Chemistry of Materials;2023-08-18
5. Why big data and compute are not necessarily the path to big materials science;Communications Materials;2022-08-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3