A Probabilistic Fatigue Framework to Enable Location-Specific Lifing for Critical Thermo-mechanical Engineering Applications

Author:

Bandyopadhyay Ritwik,Sangid Michael D.ORCID

Abstract

AbstractThe present paper describes a probabilistic framework to predict the fatigue life and failure mode under various thermo-mechanical loading conditions. Specifically, inclusion- and matrix-driven competing failure modes are examined within nickel-based superalloys. The critical accumulated plastic strain energy density (APSED) is employed as a unified metric to predict fatigue crack initiation in metals, which is favorable due to the usage of a single unknown parameter and its capability to predict failure across loading conditions and failure modes. In this research, we characterize the temperature-dependent variation of the critical APSED using a Bayesian inference framework and predict the competing failure modes in a coarse grain variant of RR1000 with varying strain range and temperature. The critical APSED appears to decrease along a vertically reflected sigmoidal curve with increasing temperature. Further, (a) the prediction of a failure mode, (b) failure mode associated with the minimum life, and (c) the change in the location associated with the matrix-driven failure mode with increasing temperature and decreasing strain range are consistent with the experimentally observed trends in RR1000, as well as other Nickel-based superalloys, documented in the literature. Finally, for each simulated loading condition, the uncertainty in the fatigue life is quantified as a prediction interval computed based on a $$95\%$$ 95 % confidence level of the critical APSED and the computed APSED from simulations. The overall framework provides a promising step towards microstructural-based fatigue life determination of components and enables a location-specific lifing approach.

Funder

Rolls-Royce

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,General Materials Science

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phasing effects on thermo-mechanical fatigue damage investigated via crystal plasticity modeling;Materials Science and Engineering: A;2024-06

2. Evolution of Model-Based Materials Definitions;Integrating Materials and Manufacturing Innovation;2024-05-15

3. A Methodology for the Rapid Qualification of Additively Manufactured Materials Based on Pore Defect Structures;Integrating Materials and Manufacturing Innovation;2024-02-27

4. Modeling fatigue behavior of additively manufactured alloys with an emphasis on pore defect morphology;Journal of the Mechanics and Physics of Solids;2023-12

5. Training material models using gradient descent algorithms;International Journal of Plasticity;2023-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3