A Methodology for the Rapid Qualification of Additively Manufactured Materials Based on Pore Defect Structures

Author:

Stopka Krzysztof S.ORCID,Desrosiers Andrew,Andreaco Amber,Sangid Michael D.ORCID

Abstract

AbstractAdditive manufacturing (AM) can create net or near-net-shaped components while simultaneously building the material microstructure, therefore closely coupling forming the material and shaping the part in contrast to traditional manufacturing with distinction between the two processes. While there are well-heralded benefits to AM, the widespread adoption of AM in fatigue-limited applications is hindered by defects such as porosity resulting from off-nominal process conditions. The vast number of AM process parameters and conditions make it challenging to capture variability in porosity that drives fatigue design allowables during qualification. Furthermore, geometric features such as overhangs and thin walls influence local heat conductivity and thereby impact local defects and microstructure. Consequently, qualifying AM material within parts in terms of material properties is not always a straightforward task. This article presents an approach for rapid qualification of AM fatigue-limited parts and includes three main aspects: (1) seeding pore defects of specific size, distribution, and morphology into AM specimens, (2) combining non-destructive and destructive techniques for material characterization and mechanical fatigue testing, and (3) conducting microstructure-based simulations of fatigue behavior resulting from specific pore defect and microstructure combinations. The proposed approach enables simulated data to be generated to validate and/or augment experimental fatigue data sets with the intent to reduce the number of tests needed and promote a more rapid route to AM material qualification. Additionally, this work suggests a closer coupling between material qualification and part certification for determining material properties at distinct regions within an AM part.

Funder

National Institute of Standards and Technology

Publisher

Springer Science and Business Media LLC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3