Maritime transport and regional climate change impacts in large EU islands and archipelagos

Author:

Zittis GeorgeORCID,Ahrens BodoORCID,Obermann-Hellhund AnikaORCID,Giannakis EliasORCID,Risto DannyORCID,Agulles Gamez Miguel,Jorda GabrielORCID,Quesada Peña Mónica,Lora Rodríguez Veronica,Guersi Sauret Jose Luis,Lionello PieroORCID,Briche Elodie,Collignan JulieORCID,Grätz Matthias,Arikas Damian,Stylianou ConstantinosORCID,Neophytou Haris,Serghides DespinaORCID

Abstract

AbstractMaritime transport is a vital sector for global trade and the world economy. Particularly for islands, there is also an important social dimension of this sector, since island communities strongly rely on it for a connection with the mainland and the transportation of goods and passengers. Furthermore, islands are exceptionally vulnerable to climate change, as the rising sea level and extreme events are expected to induce severe impacts. Such hazards are anticipated to also affect the operations of the maritime transport sector by affecting either the port infrastructure or ships en route. The present study is an effort to better comprehend and assess the future risk of maritime transport disruption in six European islands and archipelagos, and it aims at supporting regional to local policy and decision-making. We employ state-of-the-art regional climate datasets and the widely used impact chain approach to identify the different components that might drive such risks. Larger islands (e.g., Corsica, Cyprus and Crete) are found to be more resilient to the impacts of climate change on maritime operations. Our findings also highlight the importance of adopting a low-emission pathway, since this will keep the risk of maritime transport disruption similar to present levels or even slightly decreased for some islands because of an enhanced adaptation capacity and advantageous demographic changes.

Funder

Horizon 2020 Framework Programme

Johann Wolfgang Goethe-Universität, Frankfurt am Main

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3