Abstract
AbstractDue to growing interest in twenty-first-century skills, and critical thinking as a key element, logical reasoning is gaining increasing attention in mathematics curricula in secondary education. In this study, we report on an analysis of video recordings of student discussions in one class of seven students who were taught with a specially designed course in logical reasoning for non-science students (12th graders). During the course of 10 lessons, students worked on a diversity of logical reasoning tasks: both closed tasks where all premises were provided and everyday reasoning tasks with implicit premises. The structure of the course focused on linking different modes of representation (enactive, iconic, and symbolic), based on the model of concreteness fading (Fyfe et al., 2014). Results show that students easily link concrete situations to certain iconic referents, such as formal (letter) symbols, but need more practice for others, such as Venn and Euler diagrams. We also show that the link with the symbolic mode, i.e. an interpretation with more general and abstract models, is not that strong. This might be due to the limited time spent on further practice. However, in the transition from concrete to symbolic via the iconic mode, students may take a step back to a visual representation, which shows that working on such links is useful for all students. Overall, we conclude that the model of concreteness fading can support education in logical reasoning. One recommendation is to devote sufficient time to establishing links between different types of referents and representations.
Publisher
Springer Science and Business Media LLC
Reference48 articles.
1. Adey, P., & Shayer, M. (1993). An exploration of long-term far-transfer effects following an extended intervention program in the high school science curriculum. Cognition and Instruction, 11(1), 1–29.
2. Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2018). Secondary students’ logical reasoning abilities. In E. Bergqvist, O. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education, 5, 271. PME.
3. Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2020a). Logical reasoning in formal and everyday reasoning tasks. International Journal of Science and Mathematics Education, 18(8), 1673–1694. https://doi.org/10.1007/s10763-019-10039-8
4. Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2020b). Students’ use of formalisations for improved logical reasoning [Manuscript submitted for publication]. Institute for Science Education and Communication, University of Groningen.
5. Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. ASCD.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献