Student Development in Logical Reasoning: Results of an Intervention Guiding Students Through Different Modes of Visual and Formal Representation

Author:

Bronkhorst HugoORCID,Roorda Gerrit,Suhre CorORCID,Goedhart MartinORCID

Abstract

AbstractDue to growing interest in twenty-first-century skills, and critical thinking as a key element, logical reasoning is gaining increasing attention in mathematics curricula in secondary education. In this study, we report on an analysis of video recordings of student discussions in one class of seven students who were taught with a specially designed course in logical reasoning for non-science students (12th graders). During the course of 10 lessons, students worked on a diversity of logical reasoning tasks: both closed tasks where all premises were provided and everyday reasoning tasks with implicit premises. The structure of the course focused on linking different modes of representation (enactive, iconic, and symbolic), based on the model of concreteness fading (Fyfe et al., 2014). Results show that students easily link concrete situations to certain iconic referents, such as formal (letter) symbols, but need more practice for others, such as Venn and Euler diagrams. We also show that the link with the symbolic mode, i.e. an interpretation with more general and abstract models, is not that strong. This might be due to the limited time spent on further practice. However, in the transition from concrete to symbolic via the iconic mode, students may take a step back to a visual representation, which shows that working on such links is useful for all students. Overall, we conclude that the model of concreteness fading can support education in logical reasoning. One recommendation is to devote sufficient time to establishing links between different types of referents and representations.

Publisher

Springer Science and Business Media LLC

Subject

Education

Reference48 articles.

1. Adey, P., & Shayer, M. (1993). An exploration of long-term far-transfer effects following an extended intervention program in the high school science curriculum. Cognition and Instruction, 11(1), 1–29.

2. Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2018). Secondary students’ logical reasoning abilities. In E. Bergqvist, O. Österholm, C. Granberg, & L. Sumpter (Eds.), Proceedings of the 42nd Conference of the International Group for the Psychology of Mathematics Education, 5, 271. PME.

3. Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2020a). Logical reasoning in formal and everyday reasoning tasks. International Journal of Science and Mathematics Education, 18(8), 1673–1694. https://doi.org/10.1007/s10763-019-10039-8

4. Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2020b). Students’ use of formalisations for improved logical reasoning [Manuscript submitted for publication]. Institute for Science Education and Communication, University of Groningen.

5. Brookhart, S. M. (2010). How to assess higher-order thinking skills in your classroom. ASCD.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Demetriou’s tests and levels of algebraic abilities and proportional reasoning in seventh, eighth, and ninth grades;European Journal of Science and Mathematics Education;2024-04-11

2. Entrepreneurialism in Digital Journalism Education: The Niche Model;Springer Handbooks of Political Science and International Relations;2024

3. Evaluating the Utility of Notional Machine Representations to Help Novices Learn to Code Trace;Proceedings of the 2023 ACM Conference on International Computing Education Research V.1;2023-08-07

4. Development of logical thinking of high school students through a problem-based approach to teaching mathematics;Journal of Physics: Conference Series;2022-06-01

5. La Revue explore de nouveaux domaines;Canadian Journal of Science, Mathematics and Technology Education;2021-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3