In-Process Diameter Measurement Technique for Micro-Optical Fiber with Standing Wave Illumination

Author:

Michihata MasakiORCID,Zheng Zhao,Funaiwa Daiki,Murakami Sojiro,Kadoya Shotaro,Takahashi Satoru

Abstract

AbstractIn this paper, we propose an in-process measurement method of the diameter of micro-optical fiber such as a tapered optical fiber. The proposed technique is based on analyzing optically scattered light generated by standing wave illumination. The proposed method is significant in that it requires an only limited measurement range and does not require a high dynamic range sensor. These properties are suitable for in-process measurement. This experiment verified that the proposed method could measure a fiber diameter as stable as ± 0.01 μm under an air turbulence environment. As a result of comparing the measured diameter distribution with those by scanning electron microscopy, it was confirmed that the proposed method has a measurement accuracy better than several hundred nanometers.

Funder

Japan Society for the Promotion of Science

Adaptable and Seamless Technology Transfer Program through Target-Driven R and D

Publisher

Springer Science and Business Media LLC

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Materials Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3