Affiliation:
1. School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
2. Nuclear Fuel and Material Institute, Nuclear Power Institute of China, Chengdu 610213, China
3. College of Electrical Engineering, Sichuan University, Chengdu 610065, China
Abstract
Zirconium sheet has been widely used in various fields, e.g., chemistry and aerospace. The surface scratches on the zirconium sheets caused by complex processing environment have a negative impact on the performance, e.g., working life and fatigue fracture resistance. Therefore, it is necessary to detect the defect of zirconium sheets. However, it is difficult to detect such scratch images due to lots of scattered additive noise and complex interlaced structural texture. Hence, we propose a framework for adaptively detecting scratches on the surface images of zirconium sheets, including noise removing and texture suppressing. First, the noise removal algorithm, i.e., an optimized threshold function based on dual-tree complex wavelet transform, uses selected parameters to remove scattered and numerous noise. Second, the texture suppression algorithm, i.e., an optimized relative total variation enhancement model, employs selected parameters to suppress interlaced texture. Finally, by connecting disconnection based on two types of connection algorithms and replacing the Gaussian filter in the standard Canny edge detection algorithm with our proposed framework, we can more robustly detect the scratches. The experimental results show that the proposed framework is of higher accuracy.
Funder
Innovation Center of Nuclear Power Technology for National Defense Industry
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献