Non-integrable Ising Models in Cylindrical Geometry: Grassmann Representation and Infinite Volume Limit

Author:

Antinucci Giovanni,Giuliani AlessandroORCID,Greenblatt Rafael L.

Abstract

AbstractIn this paper, meant as a companion to Antinucci et al. (Energy correlations of non-integrable Ising models: the scaling limit in the cylinder, 2020. arXiv: 1701.05356), we consider a class of non-integrable 2D Ising models in cylindrical domains, and we discuss two key aspects of the multiscale construction of their scaling limit. In particular, we provide a detailed derivation of the Grassmann representation of the model, including a self-contained presentation of the exact solution of the nearest neighbor model in the cylinder. Moreover, we prove precise asymptotic estimates of the fermionic Green’s function in the cylinder, required for the multiscale analysis of the model. We also review the multiscale construction of the effective potentials in the infinite volume limit, in a form suitable for the generalization to finite cylinders. Compared to previous works, we introduce a few important simplifications in the localization procedure and in the iterative bounds on the kernels of the effective potentials, which are crucial for the adaptation of the construction to domains with boundaries.

Funder

h2020 european research council

miur

swiss fonds national

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Reference29 articles.

1. Abdesselam, A., Rivasseau, V.: Explicit fermionic tree expansions. Lett. Math. Phys. 44, 77–88 (1998)

2. Aizenman, M., et al.: Emergent planarity in two-dimensional Ising models with finite range interactions. Invent. Math. 216, 661–743 (2019)

3. Antinucci, G.: Interacting fermions on the half-line: boundary counterterms and boundary corrections. PhD thesis, Università degli Studi Roma Tre (2016). arXiv: 1701.05356

4. Antinucci, G., Guiliani, A., Greenblatt, R.L.: Energy correlations of non-integrable Ising models: the scaling limit in the cylinder (2020). arXiv: 2006.04458

5. Astala, K., et al.: Schottky’s theorem on conformal mappings between annuli: a play of derivatives and integrals. Contemp. Math. 455, 35–39 (2008)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Percolation transition for random forests in $d\geqslant 3$;Inventiones mathematicae;2024-05-15

2. Adiabatic Evolution of Low-Temperature Many-Body Systems;Communications in Mathematical Physics;2024-03

3. The surface counter-terms of the ϕ44 theory on the half space R+×R3;Journal of Mathematical Physics;2024-02-01

4. Energy Correlations of Non-Integrable Ising Models: The Scaling Limit in the Cylinder;Communications in Mathematical Physics;2022-11-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3