Trigonometric Real Form of the Spin RS Model of Krichever and Zabrodin

Author:

Fairon M.,Fehér L.ORCID,Marshall I.

Abstract

AbstractWe investigate the trigonometric real form of the spin Ruijsenaars–Schneider system introduced, at the level of equations of motion, by Krichever and Zabrodin in 1995. This pioneering work and all earlier studies of the Hamiltonian interpretation of the system were performed in complex holomorphic settings; understanding the real forms is a non-trivial problem. We explain that the trigonometric real form emerges from Hamiltonian reduction of an obviously integrable ‘free’ system carried by a spin extension of the Heisenberg double of the $${\mathrm{U}}(n)$$ U ( n ) Poisson–Lie group. The Poisson structure on the unreduced real phase space $${\mathrm{GL}}(n,{\mathbb {C}})\times {\mathbb {C}}^{nd}$$ GL ( n , C ) × C nd is the direct product of that of the Heisenberg double and $$d\ge 2$$ d 2 copies of a $${\mathrm{U}}(n)$$ U ( n ) covariant Poisson structure on $${\mathbb {C}}^n \simeq {\mathbb {R}}^{2n}$$ C n R 2 n found by Zakrzewski, also in 1995. We reduce by fixing a group valued moment map to a multiple of the identity and analyze the resulting reduced system in detail. In particular, we derive on the reduced phase space the Hamiltonian structure of the trigonometric spin Ruijsenaars–Schneider system and we prove its degenerate integrability.

Funder

London Mathematical Society

Rankin-Sneddon Research Fellowship of the University of Glasgow

NKFIH

Publisher

Springer Science and Business Media LLC

Subject

Mathematical Physics,Nuclear and High Energy Physics,Statistical and Nonlinear Physics

Reference58 articles.

1. Alekseev, A.Y., Malkin, A.Z.: Symplectic structures associated to Lie-Poisson groups. Commun. Math. Phys. 162, 147–173 (1994). arXiv:hep-th/9303038

2. Alekseev, A., Malkin, A., Meinrenken, E.: Lie group valued moment maps. J. Differ. Geom. 48, 445–495 (1998). arXiv:dg-ga/9707021

3. Arutyunov, G.: Elements of Classical and Quantum Integrable Systems. Springer, Berlin (2019)

4. Arutyunov, G.E., Frolov, S.A.: On the Hamiltonian structure of the spin Ruijsenaars–Schneider model. J. Phys. A 31, 4203–4216 (1998). arXiv:hep-th/9703119

5. Arutyunov, G., Olivucci, E.: Hyperbolic spin Ruijsenaars–Schneider model from Poisson reduction. Proc. Steklov Inst. Math. 309, 31–45 (2020). arXiv:1906.02619

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3